Search: H673 Degenerative Myelopathy, DM/info-lgs@agrotis.it

Need a new search?

If you didn't find what you were looking for, try a new search!

Degenerative Myelopathy Exon 2 (DM Exon 2)

Canine Degenerative Myelopathy (DM) is an incurable progressive neurodegenerative disease of the spinal cord. Neurodegenerative diseases are characterised by progressive loss of neurons in the central nervous system (CNS) which leads to deficiencies in function. In the case of DM, the affected region is the spinal cord, which results in ataxia (a loss of coordination). DM is similar in many ways to Amyotrophic Lateral Sclerosis (ALS) in humans.

This variant of the disease, sometimes designated as SOD1B or as Degenerative Myelopathy Exon 2, occurs in many different breeds. It is caused by an autosomal recessive with incomplete penetrance mutation to the gene SOD1. Although the mutation is found in many breeds, the disease is rarely diagnosed in breeds or in mixed-breed dogs other than those mentioned for this test. A related variant specific to the Bernese Mountain Dog has also been observed. When testing a Bernese Mountain Dog for DM, it is important to test for both of these variants, as opposed to only one.

Degenerative Myelopathy Exon 1 (DM Exon 1) – Bernese Mountain Dog

Canine Degenerative Myelopathy (DM) is an incurable progressive neurodegenerative disease of the spinal cord. Neurodegenerative diseases are characterised by progressive loss of neurons in the central nervous system (CNS) which leads to deficiencies in function. In the case of DM, the affected region is the spinal cord, which results in ataxia (a loss of coordination). DM is similar in many ways to Amyotrophic Lateral Sclerosis (ALS) in humans.

This variant of the disease, known as SOD1A or as Degenerative Myelopathy Exon 1, occurs specifically in the Bernese Mountain Dog. It is caused by an autosomal recessive with incomplete penetrance mutation to the gene SOD1. A related variant has been observed in a wide range of breeds. When testing a Bernese Mountain Dog for DM, it is important to test for both of these variants, as opposed to only one.

Degenerative Myelopathy Exon 2 (DM Exon 2) (External Patent Lab)

Canine Degenerative Myelopathy (DM) is an incurable progressive neurodegenerative disease of the spinal cord. Neurodegenerative diseases are characterised by progressive loss of neurons in the central nervous system (CNS) which leads to deficiencies in function. In the case of DM, the affected region is the spinal cord, which results in ataxia (a loss of coordination). DM is similar in many ways to Amyotrophic Lateral Sclerosis (ALS) in humans.

This variant of the disease, sometimes designated as SOD1B or as Degenerative Myelopathy Exon 2, occurs in many different breeds. It is probely caused by a autosomal recessive with incomplete penetrance mutation to the gene SOD1. The variant is found in many breeds, but the disease is rarely diagnosed in breeds or in mixed-breed dogs other than those mentioned for this test.

Hereditary Necrotizing Myelopathy (HNM)

Hereditary Necrotising Myelopathy (HNM or ENM) is a degenerative neural disease. The disorder is found in the Dutch Kooiker (Kooikerhondje) and is caused by a recessive mutation to the gene IBA57.

Leukoencephalomyelopathy – LEMP (Leonberger)

Leukoencephalomyelopathy (LEMP) is a severe, degenerative neural disorder that occurs in young dogs and causes a progressive loss of muscle coordination. The disorder is caused by a recessive mutation to the gene NAPEPLD. The variant of LEMP analysed in this test occurs in the Leonberger. A related variant is found in the Great Dane and Rottweiler.

Spongiform Leukoencephalomyelopathy (SLEM) – Border Terrier (External Lab)

Spongiform Leukoencephalomyelopathy (SLEM) also known as shaking puppy syndrome (SPS), is an autosomal recessive disease for the Border Terrier breed. Puppies with this disease show uncontrollable shaking of their hind limbs as soon as they first attempt to stand and walk. As the puppies grow, the shaking may spread to the entire body and the prognosis is generally poor.

Degenerative Encephalopathy (DEN)

Degenerative Encephalopathy with Sleep Disorders and Caudate Necrosis or simply Degenerative Encephalopathy (DEN) is a neurological condition that affects the nervous system and leads to progressive degeneration or complete destruction of neurons in the brain, specifically in the region of the brain that is important in controlling movement and some aspects of behaviour.

This neurodegenerative disease has an autosomal recessive inheritance and is observed in the Nova Scotia Duck Tolling Retriever (NSDTR, Toller).

Politique de confidentialité et déclaration de cookie

Politique de confidentialité et déclaration de cookie

VHLGenetics prend la protection de votre vie privée très au sérieux: nous traitons donc vos données personnelles avec la plus grande confidentialité. Notre politique de confidentialité couvre toutes les données personnelles que nous collectons et utilisons, y compris les données client que vous fournissez, mais également les données relatives aux personnes qui visitent notre site Web et qui s’abonnent à nos newsletters, par exemple.

VHLGenetics n’utilisera pas vos données sauf si vous y consentez ou si nous en avons besoin pour vous fournir des produits ou des services ou si nous l’avons déjà fait. VHLGenetics ne vend pas vos données personnelles à des tiers. VHLGenetics fournit ces données uniquement à des tiers participant à l’exécution de l’accord entre VHLGenetics et vous-même, tels que les processeurs de données dans nos boutiques en ligne et les communications entre laboratoires néerlandais, belges et allemands, si elles sont nécessaires pour effectuer des tests.

Pour mieux servir les organisations, nous proposons nos services ADN sous les marques CombiBreed®, CombiGen®, VHLGenetics® et SNPExpert, dont vous pouvez visiter les sites Web à l’adresse www.combibreed.com, www.combigen.com, www snpexpert.com et www.vhlgenetics. .com respectivement. Nous utilisons également parfois les noms de domaine locaux de nos marques, tels que combibreed.fr en France et combibreed.it en Italie. VHLGenetics ne peut traiter ces données d’aucune autre manière sans votre consentement (exprès).

Les coordonnées de VHLGenetics sont les suivantes:

  • Dr. Van Haeringen Laboratorium BV, Agro Business Park 100, NL-6708 PW Wageningen, Pays-Bas
  • Dr. Van Haeringen Polygen bvba, Kasteellaan 7, BE-2390 Malle, Belgique
  • Certagen GmbH, Marie-Curie-Strasse 1, D-53359 Rheinbach, Allemagne
  • Agrotis S.r.l., Via Bergamo 292, 26100 Crémone, Italie
  • BioBank AS, Holsetgata 22, 2317 Hamar, Norvège
  • CMSCH, Benešovská 123, 25209 Hradištko, République Tchèque
  • Feragen, Strubergasse 26, 5020 Salzburg, Autriche
  • INNO, Rua Cândido de Sousa 15, 47110-503 Braga, Portugal
  • Laboratorios Labocor S.L., C/ ALAMILLO 41, 8770 – COLMENAR VIEJO MADRID, Espagne
  • PharmaDNA, Demokratu 53, 48485 Kaunas, Lituanie
  • Progènes-ADN, Gaspern Vian , 29640 Plougonven, France
  • Weatherbys Scientific, Irish Equine Centre Johnstown , Co. Kildare , Ireland & UK
  • Zoolyx, Zonnestraat 3, 9300 Aalst, Belgique

Si vous avez des questions, vous pouvez également contacter notre service clientèle à info@VHLGenetics.com . Pour en savoir plus sur les marques sous-jacentes, rendez-vous sur www.dnaisourcore.com .

Politique de confidentialité

  1. Si vous passez une commande chez nous, VHLGenetics collecte les données que vous fournissez, telles que votre nom, votre adresse de courrier électronique, votre adresse de domicile et les détails de paiement, y compris votre compte bancaire ou vos données de carte de crédit, mais ne les utilise que pour vous facturer l’utilisation de nos services. et leur fournir et de vous tenir au courant des développements pertinents.
  1. Si un tiers, comme une entreprise ou un cabinet vétérinaire, passe des commandes et / ou paie des factures en vertu d’un accord entre vous et cette partie, VHLGenetics enverra les résultats de la commande à cette partie.
  1. Si vous utilisez nos sites Web, les données sont automatiquement collectées par les plateformes technologiques qui rendent cela possible. Votre navigateur Web ou votre appareil mobile peut partager certaines données avec VHLGenetics si ces appareils communiquent avec notre site Web, par exemple.
  1. Nous utilisons vos données pour vous informer électroniquement (par courrier électronique, par exemple) sur les offres spéciales et les campagnes de VHLGenetics et sur les nouveaux produits pertinents proposés par nos partenaires jusqu’à votre désinscription.
  1. Si vous vous inscrivez à notre newsletter ou demandez des informations, nous conserverons votre nom, votre adresse et votre adresse e-mail et nous vous enverrons les détails de nos campagnes et / ou promotions par e-mail et / ou nous pourrons vous contacter à propos d’offres et de promotions.
  1. VHLGenetics ne vend pas vos données. VHLGenetics ne vendra ni ne communiquera vos données personnelles à des tiers et les communiquera uniquement à des tiers participant à la fourniture des services convenus. Notre personnel et les tiers que nous engageons doivent respecter la confidentialité de vos données.
  1. Les partenaires. VHLGenetics utilise des partenaires pour gérer et stocker nos données. Ces partenaires peuvent être à la fois à l’intérieur et à l’extérieur de l’UE. VHLGenetics choisit des partenaires capables de protéger les données personnelles de manière adéquate, en respectant le bouclier de protection de la vie privée UE-États-Unis, les règles d’entreprise contraignantes ou en signant des accords de traitement. VHLGenetics conclut des accords de traitement avec tous nos partenaires si nous en avons besoin.
  1. Conservation des données. VHL conserve les documents écrits envoyés par les clients pendant cinq ans. Nous renverrons les documents écrits aux clients s’ils le demandent, mais nous pouvons en faire des copies. Nous allons détruire les matériaux et les articles envoyés par le client une fois que nous avons exécuté les contrats, sauf si nous estimons qu’ils doivent être conservés plus longtemps. Nous supprimerons vos données personnelles si vous nous le demandez, mais gardez à l’esprit que des copies de ces données peuvent être conservées dans des copies de sauvegarde.
  1. Sécurité. La sauvegarde de vos données est également importante. Si vous entrez vos coordonnées bancaires pour collecter votre abonnement automatiquement, nous nous assurons que ces informations sont cryptées avec SSL (Secure Socket Layer). N’oubliez pas qu’aucune sécurité n’est à 100% sûre et que VHLGenetics ne peut pas la garantir. Nous avons pris des mesures organisationnelles et techniques au sein de notre organisation pour sécuriser l’utilisation de vos données.
  1. Paiements via la boutique en ligne. Si vous entrez les détails de votre carte de crédit ou d’autres coordonnées bancaires dans notre boutique en ligne, sachez qu’un processeur de paiement externe traitera vos paiements.
  1. Modifications de la politique de confidentialité. Cette politique de confidentialité peut être mise à jour en réponse à des modifications de la législation applicable ou à des modifications de nos activités ou des services que nous fournissons. Nous vous informerons de tout changement via cette page; Nous vous conseillons donc de lire régulièrement cette politique de confidentialité pour vous tenir au courant. Si nous apportons des modifications qui vous affectent sérieusement, nous vous en informerons par e-mail ou via nos services.
  1. Vos droits sur vos données personnelles. Vous avez le droit de révoquer votre consentement à ce que nous utilisions vos données personnelles; et vous pouvez également examiner vos données pour les corriger ou les supprimer si les données que nous avons stockées sont incorrectes ou illégales.

Si vous souhaitez en savoir plus sur la politique de confidentialité de VHLGenetics, vous pouvez nous contacter via notre site Web ou via nos coordonnées ci-dessus. Si vous avez des plaintes sur la manière dont nous utilisons vos données mais que nous n’avons pas résolues correctement, vous pouvez adresser une réclamation à l’autorité néerlandaise de protection des données.

Vie privée

Privauté

VHLGenetics prend la protection de votre vie privée très au sérieux: nous traitons donc vos données personnelles avec la plus grande confidentialité. Notre politique de confidentialité couvre toutes les données personnelles que nous collectons et utilisons, y compris les données client que vous fournissez, mais également les données relatives aux personnes qui visitent notre site Web et qui s’abonnent à nos newsletters, par exemple.

VHLGenetics n’utilisera pas vos données sauf si vous y consentez ou si nous en avons besoin pour vous fournir des produits ou des services ou si nous l’avons déjà fait. VHLGenetics ne vend pas vos données personnelles à des tiers. VHLGenetics fournit ces données uniquement à des tiers participant à l’exécution de l’accord entre VHLGenetics et vous-même, tels que les processeurs de données dans nos boutiques en ligne et les communications entre laboratoires néerlandais, belges et allemands, si elles sont nécessaires pour effectuer des tests.

Pour mieux servir les organisations, nous offrons nos services ADN sous les marques CombiBreed®, CombiGen®, VHLGenetics® et SNPExpert, dont vous pouvez visiter les sites Web àwww.combibreed.com,www.combigen.com,www snpexpert.cometwww.vhlgenetics.comrespectivement. Nous utilisons aussi parfois les noms de domaine locaux de nos marques, comme combibreed.fr en France et combibreed.it en Italie. VHLGenetics ne peut pas traiter ces données d’une autre manière sans votre consentement (exprès).

Les coordonnées de VHLGenetics sont les suivantes :

  • Dr. Van Haeringen Laboratorium BV, Agro Business Park 100, NL-6708 PW Wageningen, Pays-Bas
  • Dr. Van Haeringen Polygen bvba, Kasteellaan 7, BE-2390 Malle, Belgique
  • Certagen GmbH, Marie-Curie-Strasse 1, D-53359 Rheinbach, Allemagne
  • Agrotis S.r.l., Via Bergamo 292, 26100 Crémone, Italie
  • BioBank AS, Holsetgata 22, 2317 Hamar, Norvège
  • CMSCH, Benešovská 123, 25209 Hradištko, République Tchèque
  • Feragen, Strubergasse 26, 5020 Salzburg, Autriche
  • INNO, Rua Cândido de Sousa 15, 47110-503 Braga, Portugal
  • Laboratorios Labocor S.L., C/ ALAMILLO 41, 8770 – COLMENAR VIEJO MADRID, Espagne
  • PharmaDNA, Demokratu 53, 48485 Kaunas, Lituanie
  • Progènes-ADN, Gaspern Vian , 29640 Plougonven, France
  • Weatherbys Scientific, Irish Equine Centre Johnstown , Co. Kildare , Irlande & Royaume-Uni
  • Zoolyx, Zonnestraat 3, 9300 Alost, Belgique

Si vous avez des questions, vous pouvez également joindre notre service à la clientèle àinfo@VHLGenetics.com. Pour en savoir plus sur nos marques sous-jacentes, rendez-vous surwww.dnaisourcore.com.

Politique

  1. Si vous passez une commande chez nous, VHLGenetics collecte les données que vous fournissez, telles que votre nom, votre adresse de courrier électronique, votre adresse de domicile et les détails de paiement, y compris votre compte bancaire ou vos données de carte de crédit, mais ne les utilise que pour vous facturer l’utilisation de nos services. et leur fournir et de vous tenir au courant des développements pertinents.
  1. Si un tiers, comme une entreprise ou un cabinet vétérinaire, passe des commandes et / ou paie des factures en vertu d’un accord entre vous et cette partie, VHLGenetics enverra les résultats de la commande à cette partie.
  1. Si vous utilisez nos sites Web, les données sont automatiquement collectées par les plateformes technologiques qui rendent cela possible. Votre navigateur Web ou votre appareil mobile peut partager certaines données avec VHLGenetics si ces appareils communiquent avec notre site Web, par exemple.
  1. Nous utilisons vos données pour vous informer électroniquement (par courrier électronique, par exemple) sur les offres spéciales et les campagnes de VHLGenetics et sur les nouveaux produits pertinents proposés par nos partenaires jusqu’à votre désinscription.
  1. Si vous vous inscrivez à notre newsletter ou demandez des informations, nous conserverons votre nom, votre adresse et votre adresse e-mail et nous vous enverrons les détails de nos campagnes et / ou promotions par e-mail et / ou nous pourrons vous contacter à propos d’offres et de promotions.
  1. VHLGenetics ne vend pas vos données. VHLGenetics ne vendra ni ne communiquera vos données personnelles à des tiers et les communiquera uniquement à des tiers participant à la fourniture des services convenus. Notre personnel et les tiers que nous engageons doivent respecter la confidentialité de vos données.
  1. Les partenaires. VHLGenetics utilise des partenaires pour gérer et stocker nos données. Ces partenaires peuvent être à la fois à l’intérieur et à l’extérieur de l’UE. VHLGenetics choisit des partenaires capables de protéger les données personnelles de manière adéquate, en respectant le bouclier de protection de la vie privée UE-États-Unis, les règles d’entreprise contraignantes ou en signant des accords de traitement. VHLGenetics conclut des accords de traitement avec tous nos partenaires si nous en avons besoin.
  1. Conservation des données. VHL conserve les documents écrits envoyés par les clients pendant cinq ans. Nous renverrons les documents écrits aux clients s’ils le demandent, mais nous pouvons en faire des copies. Nous allons détruire les matériaux et les articles envoyés par le client une fois que nous avons exécuté les contrats, sauf si nous estimons qu’ils doivent être conservés plus longtemps. Nous supprimerons vos données personnelles si vous nous le demandez, mais gardez à l’esprit que des copies de ces données peuvent être conservées dans des copies de sauvegarde.
  1. Sécurité. La sauvegarde de vos données est également importante. Si vous entrez vos coordonnées bancaires pour collecter votre abonnement automatiquement, nous nous assurons que ces informations sont cryptées avec SSL (Secure Socket Layer). N’oubliez pas qu’aucune sécurité n’est à 100% sûre et que VHLGenetics ne peut pas la garantir. Nous avons pris des mesures organisationnelles et techniques au sein de notre organisation pour sécuriser l’utilisation de vos données.
  1. Paiements via la boutique en ligne. Si vous entrez les détails de votre carte de crédit ou d’autres coordonnées bancaires dans notre boutique en ligne, sachez qu’un processeur de paiement externe traitera vos paiements.
  1. Modifications de la politique de confidentialité. Cette politique de confidentialité peut être mise à jour en réponse à des modifications de la législation applicable ou à des modifications de nos activités ou des services que nous fournissons. Nous vous informerons de tout changement via cette page; Nous vous conseillons donc de lire régulièrement cette politique de confidentialité pour vous tenir au courant. Si nous apportons des modifications qui vous affectent sérieusement, nous vous en informerons par e-mail ou via nos services.
  1. Vos droits sur vos données personnelles. Vous avez le droit de révoquer votre consentement à ce que nous utilisions vos données personnelles; et vous pouvez également examiner vos données pour les corriger ou les supprimer si les données que nous avons stockées sont incorrectes ou illégales.

S’il y a quelque chose que vous aimeriez savoir sur la politique de confidentialité de VHLGenetics, vous pouvez nous contacter via notre site Web ou via nos coordonnées ci-dessus. Si vous avez des plaintes sur la manière dont nous utilisons vos données mais que nous n’avons pas résolues correctement, vous pouvez adresser une réclamation à l’autorité néerlandaise de protection des données.

Roan

Roan is a white patterning coat colour trait of intermixed white and coloured hairs in the body while the head, lower legs, mane and tail remain colored. Roan horses are born with the pattern, though it may not be obvious until the foal coat is shed. The white and coloured hairs are evenly mixed in horses that inherit the classic Roan gene, which can differentiate this from several mimic patterns called roaning. Roaning patterns tend to be uneven in the distribution of white hairs and the inheritance of roaning has not been defined. The mutation causing the Roan coat colour has not yet been identified. The Coat Roan test (P659) tests for DNA markers that are associated with Roan coat colour in several breeds, the DNA markers can be used to determine if a horse has the Roan mutation and how many copies. This test detects three variants (alleles), Rn, Rn* and N. The allele Rn is dominant. One or two copies of the Rn allele result in a Roan coat colour. The allele Rn* is very uncommon and not always associated with the Roan coat colour, this allele has only been observed in Tennessee Walking horses and Rocky Mountain horses. The allele N is recessive and does not have an effect on the basic colour.

The Coat Colour Roan test encloses the following results, in this scheme the results of the Coat Colour Roan test are shown in combination with the possible results for the tests that determine the basic Coat Colour (Coat Colour Chestnut and Coat Colour Agouti test):

Result Roan

Result Chestnut + Agouti

Coat Colour

Description

N/N

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel

 

Not Roan. The basic colour chestnut/sorrel is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + A/A or A/a

Bay, Brown

Not Roan. The basic colour bay/brown is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + a/a

Black

Not Roan. The basic colour black is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

Rn/N

e/e + A/A, A/a or a/a

 

Chestnut/sorrel Roan

One copy of the dominant Rn allele. The colour is chestnut/sorrel roan, unless modified by other colour modifying genes. It can pass on either allele N or Rn to its offspring.

Rn/N

E/E or E/e + A/A or A/a

Brown/bay Roan

One copy of the dominant Rn allele. The colour is brown/bay roan, unless modified by other colour modifying genes. It can pass on either allele N or Rn to its offspring.

Rn/N

E/E or E/e + a/a

Black Roan

One copy of the dominant Rn allele. The colour is black roan, unless modified by other colour modifying genes. It can pass on either allele N or Rn to its offspring.

Rn*/N

e/e + A/A, A/a or a/a

Chestnut/sorrel or Chestnut/sorrel Roan

One copy of the uncommon Rn* allele. The colour can be chestnut/sorrel or chestnut/sorrel roan, unless modified by other colour modifying genes. It can pass on either allele N or Rn* to its offspring.

Rn*/N

E/E or E/e + A/A or A/a

Brown/bay or Brown/bay Roan

One copy of the uncommon Rn* allele. The colour can be brown/bay or brown/bay roan, unless modified by other colour modifying genes. It can pass on either allele N or Rn* to its offspring.

Rn*/N

E/E or E/e + a/a

Black or Black Roan

One copy of the uncommon Rn* allele. The colour can be black or black roan, unless modified by other colour modifying genes. It can pass on either allele N or Rn* to its offspring.

Rn/Rn

e/e + A/A, A/a or a/a

Chestnut/sorrel Roan

Two copies of the dominant Rn allele. The colour is chestnut/sorrel roan, unless modified by other colour modifying genes. It can only pass on allele Rn to its offspring.

Rn/Rn

E/E or E/e + A/A or A/a

Brown/bay Roan

Two copies of the dominant Rn allele. The colour is brown/bay roan, unless modified by other colour modifying genes. It can only pass on allele Rn to its offspring.

Rn/Rn

E/E or E/e + a/a

Black Roan

Two copies of the dominant Rn allele. The colour is black roan, unless modified by other colour modifying genes. It can only pass on allele Rn to its offspring.

Rn/Rn*

e/e + A/A, A/a or a/a

Chestnut/sorrel Roan

One copy of the dominant Rn allele and one copy of the uncommon Rn* allele. The colour is chestnut/sorrel roan, unless modified by other colour modifying genes. It can pass on either allele Rn or Rn* to its offspring.

Rn/Rn*

E/E or E/e + A/A or A/a

Brown/bay Roan

One copy of the dominant Rn allele and one copy of the uncommon Rn* allele. The colour is brown/bay roan, unless modified by other colour modifying genes. It can pass on either allele Rn or Rn* to its offspring.

Rn/Rn*

E/E or E/e + a/a

Black Roan

One copy of the dominant Rn allele and one copy of the uncommon Rn* allele. The colour is black roan, unless modified by other colour modifying genes. It can pass on either allele Rn or Rn* to its offspring.

Rn*/Rn*

e/e + A/A, A/a or a/a

Chestnut/sorrel or Chestnut/sorrel Roan

Two copies of the uncommon Rn* allele. The colour can be chestnut/sorrel or chestnut/sorrel roan, unless modified by other colour modifying genes. It can only pass on allele Rn* to its offspring.

Rn*/Rn*

E/E or E/e + A/A or A/a

Brown/bay or Brown/bay Roan

Two copies of the uncommon Rn* allele. The colour can be brown/bay or brown/bay roan, unless modified by other colour modifying genes. It can only pass on allele Rn* to its offspring.

Rn*/Rn*

E/E or E/e + a/a

Black or Black Roan

Two copies of the uncommon Rn* allele. The colour can be black or black roan, unless modified by other colour modifying genes. It can only pass on allele Rn* to its offspring.

Dun dilution

The Dun dilution gene lightens the coat colour of the horse by lightening the body colour, leaving the head, lower legs, mane and tail undiluted. Dun is also typically characterized by “primitive markings”, allmost all dun horses possess at least the dorsal stripe, but the presence of the other primitive markings varies. Other common markings may include horizontal striping on the legs, transverse striping across the shoulders, and lighter guard hairs along the edges of a dark mane and tail. Dun diluted coat colour with primitive markings is considered the “wild-type” colour and is found in wild equids such as przewalski horses. Dun dilutes both red and black pigment, and the resulting colors range from apricot, golden, dark gray, olive and many more subtle variations. A horse can also carry mutations for other modifying genes which can further affect its coat colour. The Coat Colour Dun dilution test (P660) tests for the genetic status of the TBX3 gene. This gene has three variants (alleles); allele D is dominant over the alleles nd1 and nd2; allele nd1 is dominant over nd2. The dominant allele D results in Dun dilution with primitive markings. Allele nd1 does not dilute the coat colour of the horse, primitive markings are present but the expression is variable. Allele nd2 does not have an effect on the basic colour.

The Coat Colour Dun dilution test encloses the following results, in this scheme the results of the Coat Colour Dun dilution test are shown in combination with the possible results for the tests that determine the basic Coat Colour (Coat Colour Chestnut and Coat Colour Agouti test):

Result Dun dilution

Result Chestnut + Agouti

Coat Colour

Description

nd2/nd2

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel. No primitive markings

Two copies of the nd2 allele. Coat colour is not diluted and primitive markings are absent. The basic colour chestnut/sorrel is not modified unless modified by other colour modifying genes. It can only pass on allele nd2 to its offspring.

nd2/nd2

E/E or E/e + A/A or A/a

Bay, Brown. No primitive markings

Two copies of the nd2 allele. Coat colour is not diluted and primitive markings are absent. The basic colour bay/brown is not modified unless modified by other colour modifying genes. It can only pass on allele nd2 to its offspring.

nd2/nd2

E/E or E/e + a/a

Black. No primitive markings

Two copies of the nd2 allele. Coat colour is not diluted and primitive markings are absent. The basic colour black is not modified unless modified by other colour modifying genes. It can only pass on allele nd2 to its offspring.

nd1/nd2

e/e + A/A, A/a or a/a

 

 

Chestnut, Sorrel. Primitive markings may be present

One copy of the nd1 allele and one copy of the nd2 allele. The nd1 allele is dominant over the nd2 allele. Coat colour is not diluted. Primitive markings may be present. The colour can be further modified by other colour modifying genes. It can pass on either allele nd1 or nd2 to its offspring.

nd1/nd2

E/E or E/e + A/A or A/a

Bay, Brown. Primitive markings may be present

One copy of the nd1 allele and one copy of the nd2 allele. The nd1 allele is dominant over the nd2 allele. Coat colour is not diluted. Primitive markings may be present. The colour can be further modified by other colour modifying genes. It can pass on either allele nd1 or nd2 to its offspring.

nd1/nd2

E/E or E/e + a/a

Black. Primitive markings may be present

One copy of the nd1 allele and one copy of the nd2 allele. The nd1 allele is dominant over the nd2 allele. Coat colour is not diluted. Primitive markings may be present. The colour can be further modified by other colour modifying genes. It can pass on either allele nd1 or nd2 to its offspring.

nd1/nd1

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel. Primitive markings may be present

Two copies of the nd1 allele. Coat colour is not diluted. Primitive markings may be present. The colour can be further modified by other colour modifying genes. It can only pass on allele nd1 to its offspring.

nd1/nd1

E/E or E/e + A/A or A/a

Bay, Brown. Primitive markings may be present

 

Two copies of the nd1 allele. Coat colour is not diluted. Primitive markings may be present. The colour can be further modified by other colour modifying genes. It can only pass on allele nd1 to its offspring.

nd1/nd1

E/E or E/e + a/a

Black. Primitive markings may be present

 

Two copies of the nd1 allele. Coat colour is not diluted. Primitive markings may be present. The colour can be further modified by other colour modifying genes. It can only pass on allele nd1 to its offspring.

D/nd2

e/e + A/A, A/a or a/a

 

Red dun. With primitive markings

One copy of the dominant D allele and one copy of the nd2 allele. Coat colour is dun-diluted with primitive markings. The colour can be further modified by other colour modifying genes. It can pass on either allele D or nd2 to its offspring.

D/nd2

E/E or E/e + A/A or A/a

Bay dun. With primitive markings

One copy of the dominant D allele and one copy of the nd2 allele. Coat colour is dun-diluted with primitive markings. The colour can be further modified by other colour modifying genes. It can pass on either allele D or nd2 to its offspring.

D/nd2

E/E or E/e + a/a

Blue dun. With primitive markings

One copy of the dominant D allele and one copy of the nd2 allele. Coat colour is dun-diluted with primitive markings. The colour can be further modified by other colour modifying genes. It can pass on either allele D or nd2 to its offspring.

D/nd1

e/e + A/A, A/a or a/a

 

Red dun. With primitive markings

One copy of the dominant D allele and one copy of the nd1 allele. Coat colour is dun-diluted with primitive markings. The colour can be further modified by other colour modifying genes. It can pass on either allele D or nd1 to its offspring.

D/nd1

E/E or E/e + A/A or A/a

Bay dun. With primitive markings

One copy of the dominant D allele and one copy of the nd1 allele. Coat colour is dun-diluted with primitive markings. The colour can be further modified by other colour modifying genes. It can pass on either allele D or nd1 to its offspring.

D/nd1

E/E or E/e + a/a

Blue dun. With primitive markings

One copy of the dominant D allele and one copy of the nd1 allele. Coat colour is dun-diluted with primitive markings. The colour can be further modified by other colour modifying genes. It can pass on either allele D or nd1 to its offspring.

D/D

e/e + A/A, A/a or a/a

Red dun. With primitive markings

Two copies of the dominant D allele. Coat colour is dun-diluted with primitive markings. The colour can be further modified by other colour modifying genes. It can only pass on allele D to its offspring.

D/D

E/E or E/e + A/A or A/a

Bay, Classic, Zebra dun. With primitive markings

Two copies of the dominant D allele. Coat colour is dun-diluted with primitive markings. The colour can be further modified by other colour modifying genes. It can only pass on allele D to its offspring.

D/D

E/E or E/e + a/a

Blue, Mouse dun. With primitive markings

Two copies of the dominant D allele. Coat colour is dun-diluted with primitive markings. The colour can be further modified by other colour modifying genes. It can only pass on allele D to its offspring.

Leukodystrophy

Canine Spongiform Leukoencephalomyelopathy (SLEM), also known as simply Leukodystrophy, is a severe degenerative neurological disease that causes weakness, paralysis and spastic movement. The disorder is caused by a mitochondrial mutation to the gene CYTB, and is found in the Australian Cattle Dog and the Shetland Sheepdog.

Sabino 1

Sabino is a general description for a group of similar white spotting patterns. The sabino pattern is described as irregular spotting usually on the legs, belly and face, often with roaning around the edges of the white markings. A mutation has been discovered that produces one type of sabino pattern, it has been named Sabino1 as it is not present in all sabino-patterned horses. More mutations will probably exist that account for other sabino patterns. The Coat Colour Sabino 1 test (P785) tests for the genetic status of the KIT gene. This gene has two variants (alleles). The allele SB1 is semi-dominant. One copy of the SB1 allele results in horses with broken Sabino markings and possibly only a small amount of white. Two copies of the SB1 allele result in at least 90% white, also referred to as Sabino-white. The allele N is recessive and does not have an effect on the basic colour.

The Coat Colour Sabino 1 test encloses the following results, in this scheme the results of the Coat Colour Sabino 1 test are shown in combination with the possible results for the tests that determine the basic Coat Colour (Coat Colour Chestnut and Coat Colour Agouti test):

Result Sabino 1

Result Chestnut + Agouti

Coat Colour

Description

N/N

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel

 

Not Sabino 1. The basic colour chestnut/sorrel is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + A/A or A/a

Bay, Brown

Not Sabino 1. The basic colour bay/brown is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + a/a

Black

Not Sabino 1. The basic colour is not black modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/SB1

e/e + A/A, A/a or a/a

 

Chestnut/sorrel sabino

Sabino 1 pattern. One copy of the SB1 allele. Horse typically may have 2 or more white legs, blaze, spots or roaning in the midsection and jagged margins around white areas unless modified by other colour modifying genes. It can pass on either allele N or SB1 to its offspring.

N/SB1

E/E or E/e + A/A or A/a

Brown/bay sabino

Sabino 1 pattern. One copy of the SB1 allele. Horse typically may have 2 or more white legs, blaze, spots or roaning in the midsection and jagged margins around white areas unless modified by other colour modifying genes. It can pass on either allele N or SB1 to its offspring.

N/SB1

E/E or E/e + a/a

Black sabino

Sabino 1 pattern. One copy of the SB1 allele. Horse typically may have 2 or more white legs, blaze, spots or roaning in the midsection and jagged margins around white areas unless modified by other colour modifying genes. It can pass on either allele N or SB1 to its offspring.

SB1/SB1

e/e + A/A, A/a or a/a

 

Chestnut/sorrel sabino

Sabino 1 pattern. Two copies of the SB1 allele. Horse is complete or nearly complete white unless modified by other colour modifying genes. It can only pass on allele SB1 to its offspring.

SB1/SB1

E/E or E/e + A/A or A/a

Brown/bay sabino

Sabino 1 pattern. Two copies of the SB1 allele. Horse is complete or nearly complete white unless modified by other colour modifying genes. It can only pass on allele SB1 to its offspring.

SB1/SB1

E/E or E/e + a/a

Black sabino

Sabino 1 pattern. Two copies of the SB1 allele. Horse is complete or nearly complete white unless modified by other colour modifying genes. It can only pass on allele SB1 to its offspring.

Tobiano

The Tobiano coat pattern usually involves white on all four legs below the hocks and knees and rounded white spots on the body with sharp, clean edges. The head is dark, with white markings like those of a solid colored horse. The white on the body will generally cross the top-line of the horse. The skin underlying the white spots is pink and under the colored areas it is black. The eyes are usually brown, but one or both may be blue or partially blue. The tail can be two colors, a characteristic seldom seen in horses that are not tobiano. A horse can also carry mutations for other modifying genes which can further affect its coat colour.

The Coat Colour Tobiano test (P903) tests for a genetic factor that affects the function of the KIT gene. This gene has two variants (alleles). The dominant allele TO results in the Tobiano pattern and the recessive allele N does not have an effect on the basic colour.

The Coat Colour Tobiano test encloses the following results, in this scheme the results of the Coat Colour Tobiano test are shown in combination with the possible results for the tests that determine the basic Coat Colour (Coat Colour Chestnut and Coat Colour Agouti test):

Result Tobiano

Result Chestnut + Agouti

Coat Colour

Description

N/N

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel

 

Not Tobiano. The basic colour chestnut/sorrel is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + A/A or A/a

Bay, Brown

Not Tobiano. The basic colour bay/brown is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + a/a

Black

Not Tobiano. The basic colour black is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/TO

e/e + A/A, A/a or a/a

 

Chestnut/sorrel tobiano

One copy of the dominant TO allele. The colour is chestnut/sorrel tobiano unless modified by other colour modifying genes. It can pass on either allele N or TO to its offspring.

N/TO

E/E or E/e + A/A or A/a

Bay/brown tobiano

One copy of the dominant TO allele. The colour is bay/brown tobiano unless modified by other colour modifying genes. It can pass on either allele N or TO to its offspring.

N/TO

E/E or E/e + a/a

Black tobiano

One copy of the dominant TO allele. The colour is black tobiano unless modified by other colour modifying genes. It can pass on either allele N or TO to its offspring.

TO/TO

e/e + A/A, A/a or a/a

 

Chestnut/sorrel tobiano

Two copies of the dominant TO allele. The colour is chestnut/sorrel tobiano unless modified by other colour modifying genes. It can only pass on allele TO to its offspring.

TO/TO

E/E or E/e + A/A or A/a

Bay/brown tobiano

Two copies of the dominant TO allele. The colour is bay/brown tobiano unless modified by other colour modifying genes. It can only pass on allele TO to its offspring.

TO/TO

E/E or E/e + a/a

Black tobiano

Two copies of the dominant TO allele. The colour is black tobiano unless modified by other colour modifying genes. It can only pass on allele TO to its offspring.

Dominant White 3

White patterning in horses is known as Dominant White or White. Dominant White patterns are variable, ranging from minimal Sabino-like spotting to all-white horses. The eye colour of Dominant White horses is brown. There are about 20 different mutations identified that are associated with white patterns, all mutations are found in the KIT gene. Except for W20, most of the known Dominant White mutations arose recently and are restricted to specific lines within breeds. The Coat Colour Dominant White 3 test (P592) tests for the mutation known as W20 in the KIT gene. This test detects two variants (alleles). The allele W20 is dominant. One or two copies of the W20 allele have a subtle effect on the amount of white expressed. It appears to increase the expression of white in combination with other white pattern genes. The allele N is recessive and does not have an effect on the basic colour.

The Coat Colour Dominant White 3 test encloses the following results, in this scheme the results of the Coat Colour Dominant White 3 test are shown in combination with the possible results for the tests that determine the basic Coat Colour (Coat Colour Chestnut and Coat Colour Agouti test):

Result Dominant White 3

Result Chestnut + Agouti

Coat Colour

Description

N/N

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel

 

Not Dominant White. The basic colour chestnut/sorrel is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + A/A or A/a

Bay, Brown

Not Dominant White. The basic colour bay/brown is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + a/a

Black

Not Dominant White. The basic colour black is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/W20

e/e + A/A, A/a or a/a

 

Chestnut/sorrel with Dominant White pattern

Dominant White pattern. One copy of the W20 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can pass on either allele N or W20 to its offspring.

N/W20

E/E or E/e + A/A or A/a

Brown/bay with Dominant White pattern

Dominant White pattern. One copy of the W20 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can pass on either allele N or W20 to its offspring.

N/W20

E/E or E/e + a/a

Black with Dominant White pattern

Dominant White pattern. One copy of the W20 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can pass on either allele N or W20 to its offspring.

W20/W20

e/e + A/A, A/a or a/a

Chestnut/sorrel with Dominant White pattern

Dominant White pattern. Two copies of the W20 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can only pass on allele W20 to its offspring.

W20/W20

E/E or E/e + A/A or A/a

Brown/bay with Dominant White pattern

Dominant White pattern. Two copies of the W20 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can only pass on allele W20 to its offspring.

W20/W20

E/E or E/e + a/a

Black with Dominant White pattern

Dominant White pattern. Two copies of the W20 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can only pass on allele W20 to its offspring.

Cream dilution

The cream dilution gene has an effect on both red and black pigment and dilutes the basic coat colour to lighter coat shades. In several breeds this is considered a desirable trait. The Cream dilution gene is responsible for the palomino, buckskin, smoky black, cremello, perlino and smoky cream coat colours. A horse can also carry mutations for other modifying genes which can further affect its coat colour. The Coat Colour Cream dilution test (P713) tests for the genetic status of the MATP gene. The MATP gene has two variants (alleles). The allele Cr is semi-dominant. One copy of the Cr allele dilutes the coat colour with a single dose, resulting in palomino, buckskin or smoky black. Two copies of the Cr allele dilute the coat colour with a double dose into cremello, perlino or smoky cream. The effect on black pigment might be very subtle. Horses with two copies of the Cr allele are also called “double-dilutes” or “blue-eyed cream” and they share a number of characteristics. The eyes are pale blue, paler than the unpigmented blue eyes associated with white color or white markings, and the skin is rosy-pink. The allele N is recessive and does not have an effect on the basic colour.

The Coat Colour Cream dilution test encloses the following results, in this scheme the results of the Coat Colour Cream dilution test are shown in combination with the possible results for the tests that determine the basic Coat Colour (Coat Colour Chestnut and Coat Colour Agouti test):

Result Cream dilution

Result Chestnut + Agouti

Coat Colour

Description

N/N

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel

Non-dilute. The basic colour is chestnut or sorrel unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + A/A or A/a

Bay, Brown

Non-dilute. The basic colour is bay or brown unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + a/a

Black

Non-dilute. The basic colour is black unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/Cr

e/e + A/A, A/a or a/a

 

Palomino

 

Heterozygous dilute, one copy of the Cr allele. The basic coat colour chestnut/sorrel is diluted to palomino. These colours can be further modified by other colour modifying genes. It can pass on either allele N or Cr to its offspring.

N/Cr

E/E or E/e + A/A or A/a

Buckskin

Heterozygous dilute, one copy of the Cr allele. The basic coat colour bay/brown is diluted to buckskin. These colours can be further modified by other colour modifying genes. It can pass on either allele N or Cr to its offspring.

N/Cr

E/E or E/e + a/a

Smoky Black

Heterozygous dilute, one copy of the Cr allele. The basic coat colour black is diluted to Smoky Black. These colours can be further modified by other colour modifying genes. It can pass on either allele N or Cr to its offspring.

Cr/Cr

e/e + A/A, A/a or a/a

 

Cremello

 

Double dilute, two copies of the Cr allele. The basic coat colour chestnut/sorrel is diluted to Cremello. These colours can be further modified by other colour modifying genes. It can only pass on allele Cr to its offspring.

Cr/Cr

E/E or E/e + A/A or A/a

Perlino

Double dilute, two copies of the Cr allele. The basic coat colour bay/brown is diluted to Perlino. These colours can be further modified by other colour modifying genes. It can only pass on allele Cr to its offspring.

Cr/Cr

E/E or E/e + a/a

Smoky Cream

Double dilute, two copies of the Cr allele. The basic coat colour black is diluted to Smoky Cream. These colours can be further modified by other colour modifying genes. It can only pass on allele Cr to its offspring.

Dominant White 1

White patterning in horses is known as Dominant White or White. Dominant White patterns are variable, ranging from minimal Sabino-like spotting to all-white horses. The eye colour of Dominant White horses is brown. There are about 20 different mutations identified that are associated with white patterns, all mutations are found in the KIT gene. Except for W20, most of the known Dominant White mutations arose recently and are restricted to specific lines within breeds. The Coat Colour Dominant White 1 test (P591) tests for the mutation known as W18 in the KIT gene. This test detects two variants (alleles). The allele W18 is dominant. One or two copies of the W18 allele result in horses that display some degree of white spotting but the specific pattern cannot be predicted. The allele N is recessive and does not have an effect on the basic colour.

The Coat Colour Dominant White 1 test encloses the following results, in this scheme the results of the Coat Colour Dominant White 1 test are shown in combination with the possible results for the tests that determine the basic Coat Colour (Coat Colour Chestnut and Coat Colour Agouti test):

Result Dominant White 1

Result Chestnut + Agouti

Coat Colour

Description

N/N

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel

 

Not Dominant White. The basic colour chestnut/sorrel is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + A/A or A/a

Bay, Brown

Not Dominant White. The basic colour bay/brown is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + a/a

Black

Not Dominant White. The basic colour black is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/W18

e/e + A/A, A/a or a/a

 

Chestnut/sorrel with Dominant White pattern

Dominant White pattern. One copy of the W18 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can pass on either allele N or W18 to its offspring.

N/W18

E/E or E/e + A/A or A/a

Brown/bay with Dominant White pattern

Dominant White pattern. One copy of the W18 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can pass on either allele N or W18 to its offspring.

N/W18

E/E or E/e + a/a

Black with Dominant White pattern

Dominant White pattern. One copy of the W18 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can pass on either allele N or W18 to its offspring.

W18/W18

e/e + A/A, A/a or a/a

Chestnut/sorrel with Dominant White pattern

Dominant White pattern. Two copies of the W18 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can only pass on allele W18 to its offspring.

W18/W18

E/E or E/e + A/A or A/a

Brown/bay with Dominant White pattern

Dominant White pattern. Two copies of the W18 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can only pass on allele W18 to its offspring.

W18/W18

E/E or E/e + a/a

Black with Dominant White pattern

Dominant White pattern. Two copies of the W18 allele. The horse will display some degree of white spotting but the specific pattern cannot be predicted, unless modified by other colour modifying genes. It can only pass on allele W18 to its offspring.

Champagne dilution

The Champagne dilution gene lightens the coat colour of the horse by diluting the pigment. The skin of Champagne-diluted horses is pinkish/lavender toned and becomes speckled with age; the speckling is particularly noticeable around the eye, muzzle, under the tail, udder and sheath. The eye colour is blue-green at birth and darkens to amber as the horse ages. Champagne has the following effects on the basic coat colours of horses:

Chestnut/Sorrel -> Gold champagne:   a gold body color and often a flaxen mane and tail. Gold champagne horses are visually similar to palomino horses.

Bay/Brown -> Amber champagne:       a tan body color with brown points (sometimes referred to as amber Buckskin).

Black -> Classic champagne:               a darker tan body with brown points.

A horse can also carry mutations for other modifying genes which can further affect its coat colour. The Coat Colour Champagne dilution test (P853) tests for the genetic status of the SLC36A1 gene. This gene has two variants (alleles). The dominant allele Ch results in the dilution and the recessive allele N does not have an effect on the basic colour.

The Coat Colour Champagne dilution test encloses the following results, in this scheme the results of the Coat Colour Champagne dilution test are shown in combination with the possible results for the tests that determine the basic Coat Colour (Coat Colour Chestnut and Coat Colour Agouti test):

Result Champagne dilution

Result Chestnut + Agouti

Coat Colour

Description

N/N

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel

 

Non-dilute. The basic colour chestnut/sorrel is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + A/A or A/a

Bay, Brown

Non-dilute. The basic colour bay/brown is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + a/a

Black

Non-dilute. The basic colour black is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/Ch

e/e + A/A, A/a or a/a

 

Gold Champagne

 

One copy of the dominant Ch allele. The basic colour chestnut/sorrel is diluted to gold champagne unless modified by other colour modifying genes. It can pass on either allele N or Ch to its offspring.

N/Ch

E/E or E/e + A/A or A/a

Amber Champagne

One copy of the dominant Ch allele. The basic colour bay/brown is diluted to amber champagne unless modified by other colour modifying genes. It can pass on either allele N or Ch to its offspring.

N/Ch

E/E or E/e + a/a

Classic Champagne

One copy of the dominant Ch allele. The basic colour black is diluted to classic champagne unless modified by other colour modifying genes. It can pass on either allele N or Ch to its offspring.

Ch/Ch

e/e + A/A, A/a or a/a

 

Gold Champagne

 

Two copies of the dominant Ch allele. The basic colour chestnut/sorrel is diluted to Gold Champagne unless modified by other colour modifying genes. It can only pass on allele Ch to its offspring.

Ch/Ch

E/E or E/e + A/A or A/a

Amber Champagne

Two copies of the dominant Ch allele. The basic colour bay/brown is diluted to amber champagne unless modified by other colour modifying genes. It can only pass on allele Ch to its offspring.

Ch/Ch

E/E or E/e + a/a

Classic Champagne

Two copies of the dominant Ch allele. The basic colour black is diluted to classic champagne unless modified by other colour modifying genes. It can only pass on allele Ch to its offspring.

Pearl dilution

The Pearl dilution gene lightens the coat colour of the horse by diluting the red pigment. A chestnut basic colour is diluted to a pale, uniform apricot colour of body, mane and tail. Skin coloration is also pale. Pearl dilution is also referred to as the ‘Barlink Factor.’ The Coat Colour Pearl dilution test (P783) tests for the genetic status of the SLC45A2 gene. This gene has two variants (alleles). The allele Prl, causing the Pearl dilution is recessive. This means that only horses with two copies of the Prl allele have a lightened coat, mane and tail, in addition to bright eye colors. The dominant allele N does not have an effect on the basic coat colour.

Pearl dilution interacts with Cream dilution to produce pseudo-double dilute phenotypes including pale skin and blue/green eyes. Therefore if a horse has one copy of the Prl allele and Cream dilution (Cr allele) is also present, this results in a pseudo-double dilute, also called pseudo-cremellos or pseudo-smoky cream

A horse can also carry mutations for other modifying genes which can further affect its coat colour.

The Coat Colour Pearl dilution test encloses the following results, in this scheme the results of the Coat Colour Pearl dilution test are shown in combination with the possible results for the tests that determine the basic Coat Colour (Coat Colour Chestnut and Coat Colour Agouti test):

Result Pearl dilution

Result Chestnut + Agouti

Coat Colour

Description

N/N

e/e + A/A, A/a or a/a

Chestnut, Sorrel

Non-dilute. The basic colour chestnut/sorrel is not diluted unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + A/A or A/a

Bay, Brown

Non-dilute. The basic colour bay/brown is not diluted unless modified by other colour modifying genes. It can only pass on allele N to its offspring

N/N

E/E or E/e + a/a

Black

Non-dilute. The basic colour black is not diluted unless modified by other colour modifying genes. It can only pass on allele N to its offspring

N/Prl

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel

One copy of the recessive Prl allele. The basic colour chestnut/sorrel is not diluted unless modified by other colour modifying genes. If cream dilution is also present, this results in a pseudo-double dilute. It can pass on either allele N or Prl to its offspring.

N/Prl

E/E or E/e + A/A or A/a

Bay, Brown

One copy of the recessive Prl allele. The basic colour bay/brown is not diluted unless modified by other colour modifying genes. If cream dilution is also present, this results in a pseudo-double dilute. It can pass on either allele N or Prl to its offspring.

N/Prl

E/E or E/e + a/a

Black

One copy of the recessive Prl allele. The basic colour black not diluted unless modified by other colour modifying genes. If cream dilution is also present, this results in a pseudo-double dilute. It can pass on either allele N or Prl to its offspring.

Prl/Prl

e/e + A/A, A/a or a/a

 

Pearl dilution

Two copies of the recessive Prl allele. The basic colour chestnut/sorrel is diluted to a pale, uniform apricot colour of body hair, mane and tail. This colour can be further modified by other colour modifying genes. It can only pass on allele Prl to its offspring.

Prl/Prl

E/E or E/e + A/A or A/a

Pearl dilution

Two copies of the recessive Prl allele. The basic colour bay/brown is diluted to lightened coat, mane and tail. This colour can be further modified by other colour modifying genes. It can only pass on allele Prl to its offspring.

Prl/Prl

E/E or E/e + a/a

Pearl dilution

Two copies of the recessive Prl allele. The basic colour black is diluted to lightened coat, mane and tail. This colour can be further modified by other colour modifying genes. It can only pass on allele Prl to its offspring.

Silver dilution / MCOA

The Silver dilution gene dilutes the black pigment but has no effect on the red pigment. The effect of the Silver dilution gene can vary greatly. The mane and tail are lightened to flaxen or silver gray, and may darken on some horses as they age. A black horse will be diluted to chocolate with a lightened mane and tail. A Bay horse with Silver dilution will usually have a lightened mane and tail, as well as lightened lower legs (places with black pigment). A horse can also carry mutations for other modifying genes which can further affect its coat colour.

The Coat Colour Silver dilution test (P784) tests for the genetic status of the PMEL17 gene. This gene has two variants (alleles). The dominant allele Z results in the dilution and the recessive allele N does not have an effect on the basic colour.

The same mutation responsible for the coat color Silver is also associated with Multiple Congenital Ocular Anomalies (MCOA) Syndrome, a wide range of ocular defects that occur in the anterior and posterior parts of the eye. The severity of the syndrome is dose related, so horses with 1 copy of allele Z have fewer severe signs than those with 2 copies of allele Z.

The Coat Colour Silver dilution test encloses the following results, in this scheme the results of the Coat Colour Silver dilution test are shown in combination with the possible results for the tests that determine the basic Coat Colour (Coat Colour Chestnut and Coat Colour Agouti test):

Result Silver dilution

Result Chestnut + Agouti

Coat Colour

Description

N/N

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel

 

Non-dilute. The basic colour chestnut/sorrel is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + A/A or A/a

Bay, Brown

Non-dilute. The basic colour bay/brown is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/N

E/E or E/e + a/a

Black

Non-dilute. The basic colour black is not modified unless modified by other colour modifying genes. It can only pass on allele N to its offspring.

N/Z

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel

 

One copy of the dominant Z allele. The basic colour chestnut/sorrel is not modified unless modified by other colour modifying genes. It can pass on either allele N or Z to its offspring.

N/Z

E/E or E/e + A/A or A/a

Silver dilution on Bay or Brown

One copy of the dominant Z allele. The black pigment of bay/brown horses on lower legs is lightened and mane and tail are lightened to flaxen. The colour can be further modified by other colour modifying genes. It can pass on either allele N or Z to its offspring.

N/Z

E/E or E/e + a/a

Chocolate

One copy of the dominant Z allele. The basic colour black is diluted to chocolate with flaxen mane and tail. The colour can be further modified by other colour modifying genes. It can pass on either allele N or Z to its offspring.

Z/Z

e/e + A/A, A/a or a/a

 

Chestnut, Sorrel

 

Two copies of the dominant Z allele. The basic colour chestnut/sorrel is not modified unless modified by other colour modifying genes. It can only pass on allele Z to its offspring.

Z/Z

E/E or E/e + A/A or A/a

Silver dilution on Bay or Brown

Two copies of the dominant Z allele. The black pigment of bay/brown horses on lower legs is lightened and mane and tail are lightened to flaxen. The colour can be further modified by other colour modifying genes. It can only pass on allele Z to its offspring.

Z/Z

E/E or E/e + a/a

Chocolate

Two copies of the dominant Z allele. The basic colour black is diluted to chocolate with flaxen mane and tail. The colour can be further modified by other colour modifying genes. It can only pass on allele Z to its offspring.

Go to Top